Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Nat Immunol ; 25(4): 607-621, 2024 Apr.
Article En | MEDLINE | ID: mdl-38589621

One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain-gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials.


Biomedical Research , COVID-19 , Humans , Post-Acute COVID-19 Syndrome , Hospitalization , Immunoglobulin G
2.
Brain Commun ; 6(1): fcad357, 2024.
Article En | MEDLINE | ID: mdl-38229877

A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury.

3.
Clin Endocrinol (Oxf) ; 100(4): 317-327, 2024 04.
Article En | MEDLINE | ID: mdl-38229583

OBJECTIVE: Endocrine systems are disrupted in acute illness, and symptoms reported following coronavirus disease 2019 (COVID-19) are similar to those found with clinical hormone deficiencies. We hypothesised that people with severe acute COVID-19 and with post-COVID symptoms have glucocorticoid and sex hormone deficiencies. DESIGN/PATIENTS: Samples were obtained for analysis from two UK multicentre cohorts during hospitalisation with COVID-19 (International Severe Acute Respiratory Infection Consortium/World Health Organisation [WHO] Clinical Characterization Protocol for Severe Emerging Infections in the UK study), and at follow-up 5 months after hospitalisation (Post-hospitalisation COVID-19 study). MEASUREMENTS: Plasma steroids were quantified by liquid chromatography-mass spectrometry. Steroid concentrations were compared against disease severity (WHO ordinal scale) and validated symptom scores. Data are presented as geometric mean (SD). RESULTS: In the acute cohort (n = 239, 66.5% male), plasma cortisol concentration increased with disease severity (cortisol 753.3 [1.6] vs. 429.2 [1.7] nmol/L in fatal vs. least severe, p < .001). In males, testosterone concentrations decreased with severity (testosterone 1.2 [2.2] vs. 6.9 [1.9] nmol/L in fatal vs. least severe, p < .001). In the follow-up cohort (n = 198, 62.1% male, 68.9% ongoing symptoms, 165 [121-192] days postdischarge), plasma cortisol concentrations (275.6 [1.5] nmol/L) did not differ with in-hospital severity, perception of recovery, or patient-reported symptoms. Male testosterone concentrations (12.6 [1.5] nmol/L) were not related to in-hospital severity, perception of recovery or symptom scores. CONCLUSIONS: Circulating glucocorticoids in patients hospitalised with COVID-19 reflect acute illness, with a marked rise in cortisol and fall in male testosterone. These findings are not observed 5 months from discharge. The lack of association between hormone concentrations and common post-COVID symptoms suggests steroid insufficiency does not play a causal role in this condition.


COVID-19 , Humans , Male , Female , Hydrocortisone , Acute Disease , Aftercare , Patient Discharge , Glucocorticoids/therapeutic use , Steroids/therapeutic use , Patient Acuity , Testosterone
4.
J Clin Invest ; 134(1)2024 Jan 02.
Article En | MEDLINE | ID: mdl-38165044

Sarcoidosis is a complex immune-mediated disease characterized by clusters of immune cells called granulomas. Despite major steps in understanding the cause of this disease, many questions remain. In this Review, we perform a mechanistic interrogation of the immune activities that contribute to granuloma formation in sarcoidosis and compare these processes with its closest mimic, tuberculosis, highlighting shared and divergent immune activities. We examine how Mycobacterium tuberculosis is sensed by the immune system; how the granuloma is initiated, formed, and perpetuated in tuberculosis compared with sarcoidosis; and the role of major innate and adaptive immune cells in shaping these processes. Finally, we draw these findings together around several recent high-resolution studies of the granuloma in situ that utilized the latest advances in single-cell technology combined with spatial methods to analyze plausible disease mechanisms. We conclude with an overall view of granuloma formation in sarcoidosis.


Mycobacterium tuberculosis , Sarcoidosis , Tuberculosis , Humans , Granuloma
5.
Nat Commun ; 14(1): 7216, 2023 11 08.
Article En | MEDLINE | ID: mdl-37940670

Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.


COVID-19 , Neutrophils , Humans , CD8-Positive T-Lymphocytes , Lung , T-Lymphocytes, Cytotoxic
6.
BMJ Open Respir Res ; 10(1)2023 10.
Article En | MEDLINE | ID: mdl-37816551

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with poor prognosis. Clinical studies have demonstrated association between different blood leucocytes and mortality and forced vital capacity (FVC) decline. Here, we question which blood leucocyte levels are specifically associated with progression of fibrosis, measured by accumulation of fibrosis on CT scan using a standardised automated method. METHODS: Using the Computer-Aided Lung Informatics for Pathology Evaluation and Rating CT algorithm, we determined the correlation between different blood leucocytes (<4 months from CT) and total lung fibrosis (TLF) scores, pulmonary vessel volume (PVV), FVC% and transfer factor of lung for carbon monoxide% at baseline (n=171) and with progression of fibrosis (n=71), the latter using multivariate Cox regression. RESULTS: Neutrophils (but not monocyte or lymphocytes) correlated with extent of lung fibrosis (TLF/litre) (r=0.208, p=0.007), PVV (r=0.259, p=0.001), FVC% (r=-0.127, p=0.029) at baseline. For the 71 cases with repeat CT; median interval between CTs was 25.9 (16.8-39.9) months. Neutrophil but not monocyte levels are associated with increase in TLF/litre (HR 2.66, 95% CI 1.35 to 5.25, p=0.005). CONCLUSION: Our study shows that neutrophil rather than monocyte levels correlated with quantifiable increase in fibrosis on imaging of the lungs in IPF, suggesting its relative greater contribution to progression of fibrosis in IPF.


Idiopathic Pulmonary Fibrosis , Neutrophils , Humans , Cohort Studies , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Lung/diagnostic imaging , Vital Capacity
7.
ERJ Open Res ; 9(5)2023 Sep.
Article En | MEDLINE | ID: mdl-37868151

Background: Increased serum interleukin (IL)-33 predicts poor outcomes in patients hospitalised with coronavirus disease 2019 (COVID-19). We examined the efficacy and safety of tozorakimab, a monoclonal antibody that neutralises IL-33, in improving outcomes in ACCORD-2 (EudraCT: 2020-001736-95). Methods: ACCORD-2 was an open-label, phase 2a study in adults hospitalised with COVID-19. Patients were randomised 1:1 to tozorakimab 300 mg plus standard of care (SoC) or SoC alone. The primary end-point was time to clinical response (sustained clinical improvement of ≥2 points on the World Health Organization ordinal scale, discharge from hospital or fit for discharge) by day 29. Other end-points included death or respiratory failure, mortality and intensive care unit admission by day 29, and safety. Serum IL-33/soluble stimulated-2 (sST2) complex levels were measured by high-sensitivity immunoassay. Results: Efficacy analyses included 97 patients (tozorakimab+SoC, n=53; SoC, n=44). Median time to clinical response did not differ between the tozorakimab and SoC arms (8.0 and 9.5 days, respectively; HR 0.96, 80% CI 0.70-1.31; one-sided p=0.33). Tozorakimab was well tolerated and the OR for risk of death or respiratory failure with treatment versus SoC was 0.55 (80% CI 0.27-1.12; p=0.26), while the OR was 0.31 (80% CI 0.09-1.06) in patents with high baseline serum IL-33/sST2 complex levels. Conclusions: Overall, ACCORD-2 results suggest that tozorakimab could be a novel therapy for patients hospitalised with COVID-19, warranting further investigation in confirmatory phase 3 studies.

8.
Nat Med ; 29(10): 2498-2508, 2023 10.
Article En | MEDLINE | ID: mdl-37653345

Post-COVID cognitive deficits, including 'brain fog', are clinically complex, with both objective and subjective components. They are common and debilitating, and can affect the ability to work, yet their biological underpinnings remain unknown. In this prospective cohort study of 1,837 adults hospitalized with COVID-19, we identified two distinct biomarker profiles measured during the acute admission, which predict cognitive outcomes 6 and 12 months after COVID-19. A first profile links elevated fibrinogen relative to C-reactive protein with both objective and subjective cognitive deficits. A second profile links elevated D-dimer relative to C-reactive protein with subjective cognitive deficits and occupational impact. This second profile was mediated by fatigue and shortness of breath. Neither profile was significantly mediated by depression or anxiety. Results were robust across secondary analyses. They were replicated, and their specificity to COVID-19 tested, in a large-scale electronic health records dataset. These findings provide insights into the heterogeneous biology of post-COVID cognitive deficits.


C-Reactive Protein , COVID-19 , Adult , Humans , Prospective Studies , COVID-19/complications , Biomarkers , Hospitalization , Cognition
9.
Front Med (Lausanne) ; 10: 1218106, 2023.
Article En | MEDLINE | ID: mdl-37621457

Introduction: Sarcoidosis is a highly variable disease in terms of organ involvement, type of onset and course. Associations of genetic polymorphisms with sarcoidosis phenotypes have been observed and suggest genetic signatures. Methods: After obtaining a positive vote of the competent ethics committee we genotyped 1909 patients of the deeply phenotyped Genetic-Phenotype Relationship in Sarcoidosis (GenPhenReSa) cohort of 31 European centers in 12 countries with 116 potentially disease-relevant single-nucleotide polymorphisms (SNPs). Using a meta-analysis, we investigated the association of relevant phenotypes (acute vs. sub-acute onset, phenotypes of organ involvement, specific organ involvements, and specific symptoms) with genetic markers. Subgroups were built on the basis of geographical, clinical and hospital provision considerations. Results: In the meta-analysis of the full cohort, there was no significant genetic association with any considered phenotype after correcting for multiple testing. In the largest sub-cohort (Serbia), we confirmed the known association of acute onset with TNF and reported a new association of acute onset an HLA polymorphism. Multi-locus models with sets of three SNPs in different genes showed strong associations with the acute onset phenotype in Serbia and Lublin (Poland) demonstrating potential region-specific genetic links with clinical features, including recently described phenotypes of organ involvement. Discussion: The observed associations between genetic variants and sarcoidosis phenotypes in subgroups suggest that gene-environment-interactions may influence the clinical phenotype. In addition, we show that two different sets of genetic variants are permissive for the same phenotype of acute disease only in two geographic subcohorts pointing to interactions of genetic signatures with different local environmental factors. Our results represent an important step towards understanding the genetic architecture of sarcoidosis.

10.
Am J Chin Med ; 51(5): 1153-1188, 2023.
Article En | MEDLINE | ID: mdl-37403214

COVID-19 has posed unprecedented challenges to global public health since its outbreak. The Qing-Fei-Pai-Du decoction (QFPDD), a Chinese herbal formula, is widely used in China to treat COVID-19. It exerts an impressive therapeutic effect by inhibiting the progression from mild to critical disease in the clinic. However, the underlying mechanisms remain obscure. Both SARS-CoV-2 and influenza viruses elicit similar pathological processes. Their severe manifestations, such as acute respiratory distress syndrome (ARDS), multiple organ failure (MOF), and viral sepsis, are correlated with the cytokine storm. During flu infection, QFPDD reduced the lung indexes and downregulated the expressions of MCP-1, TNF-[Formula: see text], IL-6, and IL-1[Formula: see text] in broncho-alveolar lavage fluid (BALF), lungs, or serum samples. The infiltration of neutrophils and inflammatory monocytes in lungs was decreased dramatically, and lung injury was ameliorated in QFPDD-treated flu mice. In addition, QFPDD also inhibited the polarization of M1 macrophages and downregulated the expressions of IL-6, TNF-[Formula: see text], MIP-2, MCP-1, and IP-10, while also upregulating the IL-10 expression. The phosphorylated TAK1, IKK[Formula: see text]/[Formula: see text], and I[Formula: see text]B[Formula: see text] and the subsequent translocation of phosphorylated p65 into the nuclei were decreased by QFPDD. These findings indicated that QFPDD reduces the intensity of the cytokine storm by inhibiting the NF-[Formula: see text]B signaling pathway during severe viral infections, thereby providing theoretical and experimental support for its clinical application in respiratory viral infections.


COVID-19 , Interleukin-6 , Animals , Mice , Interleukin-6/metabolism , COVID-19/metabolism , SARS-CoV-2 , Neutrophils/metabolism , Cytokine Release Syndrome , Macrophages/metabolism , NF-kappa B/metabolism
11.
BMJ Open Respir Res ; 10(1)2023 07.
Article En | MEDLINE | ID: mdl-37495260

OBJECTIVE: Identify prevalence of self-reported swallow, communication, voice and cognitive compromise following hospitalisation for COVID-19. DESIGN: Multicentre prospective observational cohort study using questionnaire data at visit 1 (2-7 months post discharge) and visit 2 (10-14 months post discharge) from hospitalised patients in the UK. Lasso logistic regression analysis was undertaken to identify associations. SETTING: 64 UK acute hospital Trusts. PARTICIPANTS: Adults aged >18 years, discharged from an admissions unit or ward at a UK hospital with COVID-19. MAIN OUTCOME MEASURES: Self-reported swallow, communication, voice and cognitive compromise. RESULTS: Compromised swallowing post intensive care unit (post-ICU) admission was reported in 20% (188/955); 60% with swallow problems received invasive mechanical ventilation and were more likely to have undergone proning (p=0.039). Voice problems were reported in 34% (319/946) post-ICU admission who were more likely to have received invasive (p<0.001) or non-invasive ventilation (p=0.001) and to have been proned (p<0.001). Communication compromise was reported in 23% (527/2275) univariable analysis identified associations with younger age (p<0.001), female sex (p<0.001), social deprivation (p<0.001) and being a healthcare worker (p=0.010). Cognitive issues were reported by 70% (1598/2275), consistent at both visits, at visit 1 respondents were more likely to have higher baseline comorbidities and at visit 2 were associated with greater social deprivation (p<0.001). CONCLUSION: Swallow, communication, voice and cognitive problems were prevalent post hospitalisation for COVID-19, alongside whole system compromise including reduced mobility and overall health scores. Research and testing of rehabilitation interventions are required at pace to explore these issues.


COVID-19 , Adult , Female , Humans , Aftercare , Cognition , Communication , COVID-19/epidemiology , Hospitalization , Patient Discharge , Prevalence , Prospective Studies , Male
12.
Lancet Reg Health Eur ; 29: 100635, 2023 Jun.
Article En | MEDLINE | ID: mdl-37261214

Background: The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods: We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings: We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01-1.03), male (1.54, 1.16-2.04), neither obese nor severely obese (1.82, 1.06-3.13 and 4.19, 2.14-8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09-2.22) or cardiovascular disease (1.33, 1.00-1.79), and shorter hospital admission (1.01 per day, 1.00-1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation: Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding: PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care.COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders.

13.
Lancet Respir Med ; 11(8): 673-684, 2023 08.
Article En | MEDLINE | ID: mdl-37072018

BACKGROUND: Sleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea. METHODS: CircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2-7 months after hospital discharge and a later time point 10-14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107). FINDINGS: 2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4-6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5-8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (-19%; 95% CI -20 to -16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18-39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27-41% of this effect. INTERPRETATION: Sleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition. FUNDING: UK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council.


COVID-19 , Sleep Wake Disorders , Humans , COVID-19/complications , COVID-19/epidemiology , Prospective Studies , Hospitalization , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology , Sleep/physiology , Hospitals , United Kingdom/epidemiology , Lung
14.
EClinicalMedicine ; 57: 101896, 2023 Mar.
Article En | MEDLINE | ID: mdl-36936404

Background: The scale of COVID-19 and its well documented long-term sequelae support a need to understand long-term outcomes including frailty. Methods: This prospective cohort study recruited adults who had survived hospitalisation with clinically diagnosed COVID-19 across 35 sites in the UK (PHOSP-COVID). The burden of frailty was objectively measured using Fried's Frailty Phenotype (FFP). The primary outcome was the prevalence of each FFP group-robust (no FFP criteria), pre-frail (one or two FFP criteria) and frail (three or more FFP criteria)-at 5 months and 1 year after discharge from hospital. For inclusion in the primary analysis, participants required complete outcome data for three of the five FFP criteria. Longitudinal changes across frailty domains are reported at 5 months and 1 year post-hospitalisation, along with risk factors for frailty status. Patient-perceived recovery and health-related quality of life (HRQoL) were retrospectively rated for pre-COVID-19 and prospectively rated at the 5 month and 1 year visits. This study is registered with ISRCTN, number ISRCTN10980107. Findings: Between March 5, 2020, and March 31, 2021, 2419 participants were enrolled with FFP data. Mean age was 57.9 (SD 12.6) years, 933 (38.6%) were female, and 429 (17.7%) had received invasive mechanical ventilation. 1785 had measures at both timepoints, of which 240 (13.4%), 1138 (63.8%) and 407 (22.8%) were frail, pre-frail and robust, respectively, at 5 months compared with 123 (6.9%), 1046 (58.6%) and 616 (34.5%) at 1 year. Factors associated with pre-frailty or frailty were invasive mechanical ventilation, older age, female sex, and greater social deprivation. Frail participants had a larger reduction in HRQoL compared with before their COVID-19 illness and were less likely to describe themselves as recovered. Interpretation: Physical frailty and pre-frailty are common following hospitalisation with COVID-19. Improvement in frailty was seen between 5 and 12 months although two-thirds of the population remained pre-frail or frail. This suggests comprehensive assessment and interventions targeting pre-frailty and frailty beyond the initial illness are required. Funding: UK Research and Innovation and National Institute for Health Research.

15.
ERJ Open Res ; 9(1)2023 Jan.
Article En | MEDLINE | ID: mdl-36820079

Background: Persistence of respiratory symptoms, particularly breathlessness, after acute coronavirus disease 2019 (COVID-19) infection has emerged as a significant clinical problem. We aimed to characterise and identify risk factors for patients with persistent breathlessness following COVID-19 hospitalisation. Methods: PHOSP-COVID is a multicentre prospective cohort study of UK adults hospitalised for COVID-19. Clinical data were collected during hospitalisation and at a follow-up visit. Breathlessness was measured by a numeric rating scale of 0-10. We defined post-COVID-19 breathlessness as an increase in score of ≥1 compared to the pre-COVID-19 level. Multivariable logistic regression was used to identify risk factors and to develop a prediction model for post-COVID-19 breathlessness. Results: We included 1226 participants (37% female, median age 59 years, 22% mechanically ventilated). At a median 5 months after discharge, 50% reported post-COVID-19 breathlessness. Risk factors for post-COVID-19 breathlessness were socioeconomic deprivation (adjusted OR 1.67, 95% CI 1.14-2.44), pre-existing depression/anxiety (adjusted OR 1.58, 95% CI 1.06-2.35), female sex (adjusted OR 1.56, 95% CI 1.21-2.00) and admission duration (adjusted OR 1.01, 95% CI 1.00-1.02). Black ethnicity (adjusted OR 0.56, 95% CI 0.35-0.89) and older age groups (adjusted OR 0.31, 95% CI 0.14-0.66) were less likely to report post-COVID-19 breathlessness. Post-COVID-19 breathlessness was associated with worse performance on the shuttle walk test and forced vital capacity, but not with obstructive airflow limitation. The prediction model had fair discrimination (concordance statistic 0.66, 95% CI 0.63-0.69) and good calibration (calibration slope 1.00, 95% CI 0.80-1.21). Conclusions: Post-COVID-19 breathlessness was commonly reported in this national cohort of patients hospitalised for COVID-19 and is likely to be a multifactorial problem with physical and emotional components.

16.
J Magn Reson Imaging ; 58(4): 1030-1044, 2023 10.
Article En | MEDLINE | ID: mdl-36799341

BACKGROUND: Recently, deep learning via convolutional neural networks (CNNs) has largely superseded conventional methods for proton (1 H)-MRI lung segmentation. However, previous deep learning studies have utilized single-center data and limited acquisition parameters. PURPOSE: Develop a generalizable CNN for lung segmentation in 1 H-MRI, robust to pathology, acquisition protocol, vendor, and center. STUDY TYPE: Retrospective. POPULATION: A total of 809 1 H-MRI scans from 258 participants with various pulmonary pathologies (median age (range): 57 (6-85); 42% females) and 31 healthy participants (median age (range): 34 (23-76); 34% females) that were split into training (593 scans (74%); 157 participants (55%)), testing (50 scans (6%); 50 participants (17%)) and external validation (164 scans (20%); 82 participants (28%)) sets. FIELD STRENGTH/SEQUENCE: 1.5-T and 3-T/3D spoiled-gradient recalled and ultrashort echo-time 1 H-MRI. ASSESSMENT: 2D and 3D CNNs, trained on single-center, multi-sequence data, and the conventional spatial fuzzy c-means (SFCM) method were compared to manually delineated expert segmentations. Each method was validated on external data originating from several centers. Dice similarity coefficient (DSC), average boundary Hausdorff distance (Average HD), and relative error (XOR) metrics to assess segmentation performance. STATISTICAL TESTS: Kruskal-Wallis tests assessed significances of differences between acquisitions in the testing set. Friedman tests with post hoc multiple comparisons assessed differences between the 2D CNN, 3D CNN, and SFCM. Bland-Altman analyses assessed agreement with manually derived lung volumes. A P value of <0.05 was considered statistically significant. RESULTS: The 3D CNN significantly outperformed its 2D analog and SFCM, yielding a median (range) DSC of 0.961 (0.880-0.987), Average HD of 1.63 mm (0.65-5.45) and XOR of 0.079 (0.025-0.240) on the testing set and a DSC of 0.973 (0.866-0.987), Average HD of 1.11 mm (0.47-8.13) and XOR of 0.054 (0.026-0.255) on external validation data. DATA CONCLUSION: The 3D CNN generated accurate 1 H-MRI lung segmentations on a heterogenous dataset, demonstrating robustness to disease pathology, sequence, vendor, and center. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 1.


Deep Learning , Female , Humans , Male , Protons , Retrospective Studies , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Image Processing, Computer-Assisted/methods
18.
Trials ; 24(1): 61, 2023 Jan 26.
Article En | MEDLINE | ID: mdl-36703183

INTRODUCTION: Many adults hospitalised with COVID-19 have persistent symptoms such as fatigue, breathlessness and brain fog that limit day-to-day activities. These symptoms can last over 2 years. Whilst there is limited controlled studies on interventions that can support those with ongoing symptoms, there has been some promise in rehabilitation interventions in improving function and symptoms either using face-to-face or digital methods, but evidence remains limited and these studies often lack a control group. METHODS AND ANALYSIS: This is a nested single-blind, parallel group, randomised control trial with embedded qualitative evaluation comparing rehabilitation (face-to-face or digital) to usual care and conducted within the PHOSP-COVID study. The aim of this study is to determine the effectiveness of rehabilitation interventions on exercise capacity, quality of life and symptoms such as breathlessness and fatigue. The primary outcome is the Incremental Shuttle Walking Test following the eight week intervention phase. Secondary outcomes include measures of function, strength and subjective assessment of symptoms. Blood inflammatory markers and muscle biopsies are an exploratory outcome. The interventions last eight weeks and combine symptom-titrated exercise therapy, symptom management and education delivered either in a face-to-face setting or through a digital platform ( www.yourcovidrecovery.nhs.uk ). The proposed sample size is 159 participants, and data will be intention-to-treat analyses comparing rehabilitation (face-to-face or digital) to usual care. ETHICS AND DISSEMINATION: Ethical approval was gained as part of the PHOSP-COVID study by Yorkshire and the Humber Leeds West Research NHS Ethics Committee, and the study was prospectively registered on the ISRCTN trial registry (ISRCTN13293865). Results will be disseminated to stakeholders, including patients and members of the public, and published in appropriate journals. Strengths and limitations of this study • This protocol utilises two interventions to support those with ongoing symptoms of COVID-19 • This is a two-centre parallel-group randomised controlled trial • The protocol has been supported by patient and public involvement groups who identified treatments of symptoms and activity limitation as a top priority.


COVID-19 , Adult , Humans , Quality of Life , Single-Blind Method , Dyspnea , Fatigue/diagnosis , Fatigue/etiology , Randomized Controlled Trials as Topic
19.
EBioMedicine ; 87: 104402, 2023 Jan.
Article En | MEDLINE | ID: mdl-36543718

BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript.


COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Follow-Up Studies , Vaccination , Hospitalization , Immunoglobulin A , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
20.
JCI Insight ; 8(2)2023 Jan 24.
Article En | MEDLINE | ID: mdl-36472908

Severe lung damage resulting from COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways, and genes present across the spectrum of histopathological damage in COVID-19-affected lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within well-preserved lung samples from 3 patients. Despite substantial interpatient heterogeneity, we discovered evidence for a common immune-cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines, including CXCL9, CXCL10, and CXCL11, which are known to promote the recruitment of CXCR3+ immune cells. The TNF superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were consistently upregulated in the areas with severe tissue damage. We used published spatial and single-cell SARS-CoV-2 data sets to validate our findings in the lung tissue from additional cohorts of patients with COVID-19. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies.


COVID-19 , Pneumonia , Humans , Transcriptome , SARS-CoV-2 , Lung
...